

Overview of DOE's Regulatory Compliance Process and Performance Assessment

Martin Letourneau Co-Chair, Low-Level Waste Disposal Facility Federal Review Group

Dose Limits in Context

100,000 mrem – Dose leading to ~5% chance of Fatal Cancer (UNSCEAR)

10,000 mrem/yr – IAEA mandatory intervention

5,000 mrem/yr – Worker dose standard (DOE)

1,000 mrem/yr – IAEA reference level for intervention for cleanup situations

620 mrem/yr – US Average dose all sources (NCRP)

100 mrem/yr – All sources limit (IAEA, DOE, NRC)

25 mrem/yr - NRC and DOE LLW

15 mrem/yr – EPA Radiation (40 CFR 191)

10 mrem/yr – Air (atmospheric) (40 CFR 61)

4 mrem/yr – Drinking Water (40 CFR 141)

1 mrem/yr – IAEA Exemption/Clearance

In 2009, NCRP updated US Annual Average Dose from 360 to 620 mrem/yr

EPA Recommended Radon Action Level of 4 pCi/L in Basements ~7 x 10⁻³ Risk of lung cancer for non-smoker

One Transcontinental round trip flight - 5 mRem

Note: Air crew average (300 mrem/yr) From UNSCEAR (2000)

NCRP 2009 Report Annual Average Dose

Performance Assessment Contents

- > What is PA?
- How are PAs conducted?
- Key Concepts and Terminology
- DOE approach to reviewing PAs

Performance Assessment Applications

- ➤ Development of Waste Acceptance Criteria for disposal facilities – waste forms, radionuclide content, etc.
- ➤ Estimate health effects associated with leaving different amounts of waste in tanks or different levels of contamination in facilities
- Evaluation of health effects associated with different options for remediation or D&D
 - PA provides capability to be able to distinguish benefits of specific features

NRC Staff Perspective

Overview of Performance Assessment

What is Performance Assessment?

 Systematic analysis of what could happen at a site

Why use it?

- · Complex system
- · Systematic way to evaluate data
- Internationally accepted approach

Collect Data

Characteristics

Combine

Models

Estimate.

Effects 4

and

Performance Assessment: a learning process

Design and

Waste Form

Develop

Conceptual

Models

Develop

Numerical and Computer Models

What is assessed?

- · What can happen?
- · How likely is it?
- · What can result?

How is it conducted?

- · Collect data
- · Develop scientific models
- · Develop computer code
- · Analyze results

NRC would require a Performance Assessment to:

- · Provide site and design data
- · Describe barriers that isolate waste
- Evaluate features, events, and processes that affect safety
- · Provide technical basis for models and inputs
- · Account for variability and uncertainty
- · Evaluate results from alternative models, as needed

Courtesy: David Esh, US NRC

International Safety Case Concept

- IAEA, Nuclear Energy Agency and others
- Reflects use of performance assessment as only one part of a package used to support decisions
 - "The purpose of computing is insight, not numbers" – Richard Hamming
- Similar concept to the Radioactive Waste Management Basis in the DOE System

Other Perspectives on Performance Assessment

- National Council on Radiation Protection and Measurements (NCRP) Report No. 152
 - Merits of deterministic, probabilistic and combined approaches
 - "Importance Analysis"
- International Atomic Energy Agency
 - Decades of global experience on assessments
 - Develop Safety Standards for waste management activities
 - PRISM project looking at practical application of safety case concept

Performance Assessment ...

<u> IS...</u>

- A means to address postclosure protection of human health in a decision process
- A process to build confidence that projected doses are reasonably likely to be less than a given standard
- A means to provide perspective on the significance of different site, facility and waste features relative to protection of human health (demonstrate understanding of the system)

IS NOT...

- A "prediction" of doses to real people, it is <u>assumed</u> that someone will live and use water at a specific location at some point in the future
- Safety analysis for worker and public protection during pre-closure operations
- An assessment of worst case scenarios

Uncertainties

Performance Assessment Reality

Exposure Scenarios

- Assume complete loss of institutional control of DOE Site
- Resident drills a well at point of peak concentration in aquifer (outside buffer zone)
- Resident farmer with beef and milk cows, garden for consumption
- Intruder digs basement and drills well immediately above the waste (hypothetical, not a performance objective)
- Focus on the important features, events, and processes (FEPs)

Receptor Location

- Dose is dependent on location and habits of the receptor
- Point of compliance is a critical consideration (increased distance is generally equivalent to increased dilution and time for decay)
- Exposures are more significant through different pathways for different radionuclides (e.g., I-129 in milk, Tc-99 in leafy vegetables, C-14 in fish, Cs-137 for external exposure)

Source Term

- Drives the PA Process
- > Facility Description
 - Dimensions
 - Barriers (concrete, metal)
 - Initial condition and degradation of barriers
- Contaminant Inventory
 - Chemical/physical form

SRS P Reactor Area

Material Composition

container lifetime?

resins?

concrete?

enhanced mobility?

activated metal?

solubility?

gaseous release?

Factors Impacting Health Effects

Magnitude of Potential Health Effects

Toxicity includes amount and inherent toxicity
Mobility includes site properties and barriers/waste form
Location includes pathways and distance to receptor

"Toxicity"

- Represented by Dose Factors (e.g., mrem/Ci)
- More activity generally leads to greater toxicity
- > Different radionuclides have different toxicity
- > Toxicity also depends on the pathway of exposure (ingestion, inhalation, external exposure)

Persistence – Short-Lived Radionuclide

- Cs-137 source removed from teletherapy device by junk dealer in Goiânia, Brazil
- ➤ Extensive contamination (3,500 m³ of waste)
- Concrete vault provides hundreds of years of isolation to protect nearby community

Initial Inventory	30 yr	100 yr	200 yr	300 yr	500 yr
~1400 Ci	700 Ci	139 Ci	14 Ci	1.4 Ci	0.01 Ci
0.4 Ci/m ³	0.2 Ci/m ³	0.04 Ci/m ³	0.004 Ci/m ³	0.0004 Ci/m ³	0.000004 Ci/m ³

Persistence – Short- and Long-Lived

- Mixture of contamination and activated metals
- Much of activity levels within metal matrix, grouted
- Chemical (grout) and physical barriers (vessel, metals)
- > Total Inventory ~60,000 Ci

	Half-Life	Initial Ci	100 yr	500 yr	1000 yr	10,000 yr
H-3	12.3 yr	32,900	118	0.0000002	ı	-
C-14	5,730 yr	13.3	13.1	12.5	11.8	4
Co-60	5 yr	1,970	0.002	-	-	-
Ni-59	76,000 yr	132	131.9	131.4	130.8	120.5
Ni-63	100 yr	24,200	12,100	760	24	-
Cs-137	30 yr	2.7	0.3	0.00003	-	-

Factors Influencing Mobility

- > Chemistry
 - Partitioning (K_d)
 - Solubility
- > Waste Form
 - Grout
 - Activated metals
- > Containers
- > Barriers
 - Concrete
 - Steel

Mobility - Soil/Water Partitioning

mass of solute on the solid phase per unit mass of solid phase, g/g

$$\mathbf{K_d}$$
 (ml/g) =

concentration of solute in solution, g/ml

 $K_d = 0$, all activity in water

K_d large, most activity on solid

Persistence, Toxicity, and Mobility

	Half-Life (yr)	Dose Factors (mrem/pCi)		External Dose (mrem/yr)/(pCi/g)	K _d (mL/g)	
		Ingestion	Inhalation		Sandy	Clayey
H-3	12.3	6.4E-08	6.4E-08	0	0	6
C-14	5730	2.1E-06	2.1E-06	1.3E-05	10	400
Ni-59	76,000	2.1E-07	2.7E-06	0	7	30
Ni-63	100	5.8E-07	6.3E-06	0	7	30
Co-60	5	2.7E-05	2.2E-04	16	7	30
Tc-99	211,100	1.5E-06	8.3E-06	1.3E-04	0.6	1.8
Cs-137	30	5.0E-05	3.2E-05	3.6 (Ba-137m)	10	50
Np-237	2,140,000	4.4E-03	0.54	0.08	3	9
Pu-239	24,110	3.5E-03	0.43	2.9E-04	290	5,950

Most limiting Ingestion and Inhalation dose factors shown here, External Dose Factor is for a source of infinite thickness K_d = Distribution Coefficient (soil and water partitioning) 21

Technical Approaches - Deterministic Assessment

- Traditional, deterministic standards (Idaho Tank PA, many existing PAs for LLW disposal)
- Demonstrate dose is less than standard
- Add sensitivity cases to address "what-if" type questions
- How do you interpret "what-if" cases that may exceed the standard?

Technical Approaches - Probabilistic/Stochastic Assessment

- Becoming expected, riskinformed
- Demonstrate peak of means or median is less than deterministic standard
- "What-if" and uncertainty analysis implicitly included
- Relative likelihood of extreme cases is specifically represented
- How do we interpret results at extremes?

Technical Approaches - "Hybrid" Approach

- Agree on deterministic baseline case(s) to compare with deterministic standard (add sensitivity "what-if" cases)
- Use probabilistic approach to capture "what-if" questions and uncertainty analysis
 - Multiple lines of reasoning
 - Models check each other

Technical Approaches - Abstraction

Detailed Modeling used to develop average pathlines for migration

Multi-Disciplinary Team Approach

Graded and Iterative Approach

- > Start simple, more complex as necessary
- Models commensurate with quantity and quality of data
- Each successive iteration should be focused on critical aspects
- ➤ Contaminant-specific, focus on those contaminants of concern, or features of concern
- > Take credit for specific barriers or processes as necessary, defend assumptions as necessary

Graded, Barrier Analysis

Enhanced screening?

Improved cover representation?

Account for waste form (physical/chemical)?

Account for container (physical/chemical)?

Account for barriers (physical/chemical)?

More detailed site representation (physical/chemical)?

Sensitivity (Importance) Analysis

- Focus attention on parameters of greatest interest for conclusions (not just model)
- NCRP Committee adopted the term "Importance Analysis"
- Guide reviewers and also identify areas where continued work can build confidence in conclusions

PA Maintenance

- DOE approach to longer-term iterative process
- Importance analyses and results of reviews used to prioritize work
- Special analyses
- Laboratory/field studies, model development or model refinement to reduce conservatism, address key assumptions
 - C-14 column experiment at Idaho
 - SRNL waste-form specific K_d studies for I-129

Integrate and Interpret Results

- > Demonstrate understanding of the system?
- > What are the critical assumptions, design features and barriers, radionuclides, etc.?
- > Which options/barriers are effective and ineffective?
- > "Robustness" test
- ➤ Do the results provide reasonable assurance that all radionuclides can be disposed of safely in given quantities?

DOE Order 435.1, Radioactive Waste Management

- Effective implementation date July 9, 1999
- Establishes DOE HQ/Site responsibilities
 - Low-Level Waste Disposal Facility Federal Review Group (LFRG)
- Establishes Performance Objective and Requirements governing disposal actions:
 - 25 mrem all pathways dose
 - 10 mrem air pathway
 - 20 pCi/m²/second radon flux
 - Intruder Scenario

LFRG Framework and Processes

- > LFRG Manual
- > LFRG Program Management Plan
- Format and Content Guide for Performance Assessments and Composite Analyses
- > Closure Guide
- Maintenance Guide
- Monitoring Guidance

Authorization Requirements

Approved Disposal Authorization Statement (DAS)

- Approved Performance Assessment (PA)
- Approved Composite Analysis (CA)
- Approved Preliminary Closure Plan
- Approved Monitoring Plan
- Approved PA/CA Maintenance Plan
- Approved Radioactive Waste Management Basis
 - Annual Summaries (Ongoing)

Three Key LFRG Review Criteria

- > Are the information and analyses presented *complete*?
- Are the information and analyses thorough and technically supported?
- Are the conclusions valid and acceptable, based on the information and analyses presented?

LFRG Review Topics and Review Criteria for PAs & CAs

- > Site and Facility Characteristics -- 7 criteria
- Radioactive Sources and Release Mechanisms -- 6 criteria
- Performance Objectives and Measures -- 8 criteria
- > Point of Assessment -- 6 criteria
- Conceptual Model -- 5 criteria
- Mathematical Models -- 13 criteria
- Assumptions -- 2 criteria
- Exposure Pathways and Dose Analysis -- 14 criteria
- Sensitivity and Uncertainty -- 7 criteria
- ALARA and Options Analysis -- 3 criteria
- Results Integration -- 11 criteria
- Quality Assurance -- 2 criteria

-- 84 Individual Criteria

Path Forward for DOE Order 435.1

- Complex-Wide Review initiated late 2008
 - More than 10 years since first Complex-Wide Review (1996)
 - 10 years experience implementing DOE Order 435.1
 - Opportunity to re-assess and evaluate DOE's progress
 - Consistent with feedback and continuous improvement step of Integrated Safety Management System
 - Good first step for evaluating DOE Order 435.1 update needs
- Final Complex-Wide Review Report has been published
- DOE Order 435.1 Update underway and anticipated to complete late 2012
 - Will include a public review and comment period

Summary

- > LLW is regulated to a strict standard relative to everyday radiation exposures
- PA is used to help make decisions (demonstrate understanding) many supporting activities in addition to modeling
- Persistence (time), Mobility, Toxicity and Location are key to determining what is important and what is not
- Deterministic and Probabilistic approaches are used
- Several decades of continually evolving experience on PAs (US and International)

 extensive reviews are important
- > Key Concepts
 - Multi-disciplinary
 - Iterative and graded process, barrier analysis
 - Source term
 - Sensitivity and Uncertainty
 - Integration and interpretation
 - PA Maintenance

BACK UP SLIDES

Regulations and Performance Standards

- Regulations include specific criteria that must be met (performance objectives)
- DOE Order 435.1 and 10 CFR Part 61 include all pathways dose standards (25 mrem/yr)
- DOE Order 435.1 also includes composite analysis, groundwater protection and radon release standards
- NRC and DOE have performance measures for inadvertent intruder protection

Exercise 1 – Rank Each Category

- On the following slide, rank the different values in each column from smallest to largest
- Identify radionuclides with long half-lives (circle 3)
- Identify radionuclides with highest dose factors for each pathway (circle 3)
- Identify radionuclides that are most mobile in each soil type (low value) (circle 4 for sandy, 3 for clayey)
- Identify radionuclides that have a significant difference in mobility in sandy and clayey soil

Persistence, Toxicity, and Mobility

	Half-Life (yr)	Dose Factors (mrem/pCi)		External Dose (mrem/yr)/(pCi/g)	K _d (mL/g)	
		Ingestion	Inhalation		Sandy	Clayey
H-3	12.3	6.4E-08	6.4E-08	0	0	0
C-14	5730	2.1E-06	2.1E-06	1.3E-05	10	400
Ni-59	76,000	2.1E-07	2.7E-06	0	7	30
Ni-63	100	5.8E-07	6.3E-06	0	7	30
Co-60	5	2.7E-05	2.2E-04	16	7	30
Tc-99	211,100	1.5E-06	8.3E-06	1.3E-04	0.6	1.8
Cs-137	30	5.0E-05	3.2E-05	3.6 (Ba-137m)	10	50
Np-237	2,140,000	4.4E-03	0.54	0.08	3	9
Pu-239	24,110	3.5E-03	0.43	2.9E-04	290	5,950

Exercise 2 - Persistence, Toxicity, and Mobility

- Identify long-lived radionuclides (>30 yr)
 Use exercise 1 slide to help with these questions
- Discuss which dose factors are most significant for those nuclides (Is external dose important?) use slide for exercise 1
- How mobile are the "key" radionuclides? use exercise 1
- Would a different type of soil reduce mobility for any nuclides?
- Discuss management considerations for the different radionuclides

Note that this is a simplified example for illustration, a more detailed evaluation would be conducted in practice.

Persistence – Long-and Short-lived Isotopes

	Half-Life	Initial Ci	100 yr	500 yr	1000 yr	10,000 yr
H-3	12.3 yr	32,900	118	0.00000002	-	-
C-14	5,730 yr	13.3	13.1	12.5	11.8	4
Co-60	5 yr	1,970	0.002	-	-	-
Ni-59	76,000 yr	132	131.9	131.4	130.8	120.5
Ni-63	100 yr	24,200	12,100	760	24	-
Cs-137	30 yr	2.7	0.3	0.00003	-	-

